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Surface variations of the density and scalar order parameter and the elastic constants
of a uniaxial nematic phase
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The elastic constantsK24 andK13 of a spatially restricted nematic phase are found to essentially depend on
behavior of the densityr and orientational order parameterh at the surface. The cancellation of the effective
constantK13, recently revealed by Faetti and Riccardi@J. Phys. II5, 1165~1995!#, is obtained as a particular
case of a constanth and arbitraryr; whereas a spatial-dependenth violates this cancellation and restores a
finite K13 term. @S1063-651X~99!51802-3#

PACS number~s!: 61.30.Gd, 64.70.Md
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I. INTRODUCTION

More than a quarter of a century ago the elastic theory
a uniaxial nematic liquid crystal had taken the final form
the series of papers@1# by Nehring and Saupe. In this theor
the nematic phase is described by the directorn~x!, which is
a unit vector pointing along the average direction of the lo
molecular axes in the vicinity of the pointx. The director
deformations associated with nonvanishing director der
tives ]n are assumed to be sufficiently weak, i.e.,«5 l M]n
!1, wherel M is the molecular length~of order of the inter-
action range!. This approach, however, essentially presu
poses that the local symmetry in the vicinity of any spa
point inside the nematic body is thesymmetry of infinite
nematic medium. By virtue of this symmetry, leading term
in the deformation free energy~FE! appear to be quadratic i
«. The studies of the recent decade have shown that inco
rating spatial boundedness into the elastic approach is
trivial and does not reduce to just considering a surface
sion.

First, surface was shown to induce an additional ela
term F1 linear in ]n whose density vanishes in the bulk@2#.
Then, the leading part@up to termsO(«2)# of the deforma-
tion FE of a nematic liquid crystal contained in the volumeV
actually takes the form

F5
1

2
KaaFaa2K24F241K13F131F1 , ~1!

wherea51,2,3, and the standard infinite-medium quadra
FE termsFab are given by@1#

F115E dV~“•n!2, F225E dV~n•“3n!2,

F335E dV~n3“3n!2;

~2!

F245E dV“•@~“•n!2~n•“ !n#,

F135E dV“•@n•~“•n!#.
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The infinite-medium elastic constantsKaa and K13 can be
calculated provided the pairwise interactio
G„n(x8),n(x),x82x… between two infinitesimal nematic vol
umes centered at the pointsx8 and x is known, whileK24

5(K111K2212K13)/4 @1#. The form ofF1 will be discussed
somewhat below. The scalarG depends on the vectorsn8
5n(x8), n, and r5x82x only through the scalar combina
tions a5n–n8, b5r–n, b85r–n8, and r 5ur u, i.e., G
5G(a,b,b8,r ).

Second, theK24 andK13 terms in Eq.~2! are total diver-
gences and in a restricted body can be written as sur
integrals with the density linear in]n. In spite of this, in
three dimensions theK24 and K13 terms do not reduce to a
surface tension~anchoring! @3,4# and, possessing a uniqu
ability to gain the FE for finite deformations, are an impo
tant source of pattern formation~see reviews@5,6#!. For in-
stance, it was found that both theK24 and K13 terms are
responsible for the stripe domains in thin nematic films@7,8#.

Third, the very possibility of having a nonzeroK13 re-
quires justification. The problem derives from the importa
result by Faetti and Riccardi@9# revealed that the sumF1
2K24F241K13F1352 1

4 (K111K22)F24, and thus the term
F13 is cancelled out. Recently, this cancellation was sho
to be dictated by the FE symmetry@10#. In this situation, the
problem of status of theK13 term has turned into a search fo
possible additional sources thereof hidden in subsurface
nomena. Presently, the only such source of nonzeroK13 con-
sidered in the literature@10–12# is nondeformational, the so
called homogeneous part of the nematic FE giving rise to
intrinsic anchoring. However, in Ref.@3# where this source
was pointed out, the derivative-dependent terms and, in
ticular, the term apparently similar to theK13 term, were
shown to be much smaller than the anchoring. Thus,
source cannot provide a non-negligible value ofK13.

Nonetheless, the resultK1350 obtained in@9,10# might
be inconclusive for another reason recently considered
Pergamenshchik@4#. Indeed, it assumes an unrealistic ide
surface where the densityr and order parameterh constant
everywhere in the nematic body abruptly vanish. Howev
in the general case of a nonideal surface wherer andh are
spatially dependent the value ofK13 can change@4#. Physi-
cally, substantial surface variations ofh were suggested to b
essential for anchoring related phenomena
R2531 ©1999 The American Physical Society
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@13,14,4#, and were reportedly observed in experiment@15#.
Mathematically,r smoothly vanishing at the surface bring
the lower boundary to the FE with a nonzeroK13 term @4#
which is missing for the ideal surface with stepliker @16,3#.
This provides the minimization procedure that yields a sta
director field forK13Þ0 @4#. In this Rapid Communication
we incorporate a realistic nonideal surface into the ela
theory. We report formulas for all the elastic constants in
general case whenr and h are constant in the bulk an
arbitrary functions of coordinates in a thin subsurface la
of a microscopic thicknessl S . It is shown that the maste
role in theK13 cancellation is played by surface variation
the order parameter: the cancellation takes place only ifh is
constant, whereas for spatial-dependenth a finite K13 re-
stores. The constantsKaa do not depend on the surface b
havior, whereas bothK13 and K24 do. This justifies the
theory@4# with a finiteK13 term and means that the behavi
in a microscopically thin surface layer can have an obse
able elastic effect in the bulk.

II. SPATIAL-DEPENDENT DENSITY AND SCALAR
ORDER PARAMETER AND THE EFFECTIVE

PAIRWISE POTENTIAL

Here we incorporate surface nonideality in the form
spatial variations ofr and h in the macroscopic approac
neglecting biaxiality. For brevity, we denote function of
primed argument by the function with prime. Then the e
ergy of a pairwise interaction of particles with orientation
coordinatesv and spatial coordinatesx has the form

E5E dx dx8E dv dv8 f Ug2f 8, ~3!

where f 5 f (x,v) is the one-particle distribution function,U
is the microscopic pairwise interaction potential, andg2 is
the pair correlation function. The scalarU depends on the
available scalar pairwise combinations of its arguments
the absolute valuer of the separation vectorr , i.e., U
5U„vv8,(rv)(rv8),r …. At the same timeg2 can explicitly
depend on the coordinates through the functionsr, r8, h and
h8, i.e., g25g2„vv8,(rv)(rv8),r ,x,x8…. Both U and g2
are invariant under permutations ofv andv8, andx andx8.

In a uniaxial phase, the distribution function of a syste
of molecules with long axes alongv depends on the angl
between the macroscopic axisn(x) andv, f 5 f (nv,x). The
general form of this function is an expansion series in
Legendre polynomials. As usual, restricting this expansion
the first nontrivial nematic-symmetry-allowed polynomi
P2 , one has

f ~nv,x!5
r~x!

4p
@12h~x!13h~x!~nv!2#, ~4!

which automatically satisfies the density definitionr(x)
5*dv f ; the order parameterh is normalized in such a way
that the isotropic fraction vanishes and the system is m
mally ordered forh51.

The deformation FE can be separated fromE by using the
identity G(n,n8)5G(n,n)1DG(n,n8) where DG(n,n8)
le
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e
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5G(n,n8)2G(n,n) is the deformational part of the poten
tial. Substituting Eq.~4! into Eq. ~3! the elastic fractionF is
obtained in the form

F$n%5E dx dx8DGnid , ~5!

DGnid5AhhDGhh1AhDGh . ~6!

HereAhh5rr8hh8 andAh5 1
2 rr8(h82h), and the kernels

entering this formula can be written as

Ghh~a,bb8!5
9

~4p!2 E dv dv8~nv!2Ug2~nv8!2,

~7!

Gh~b2,b82!5
3

~4p!2 E dv dv8@~nv!21~n8v8!2#Ug2 .

~8!

The indicated arguments of the functionsGhh andGh follow
immediately from their scalar character and the argument
the functionUg2 , while the explicit symmetric dependenc
on x andx8 is not indicated for simplicity. The form of the
last term in Eq.~6! takes into account thatDGh is antisym-
metric in x and x8, i.e., DGh(n8,n,x8,x,r )5
2DGh(n,n8,x,x8,r ).

Formulas~5!–~8! connect the microscopic description
the effective pairwise potentialDGnid , which is the starting
point of the elastic theory@1#. If the functionsr~x! andh~x!
are constant in the volumeV and abruptly vanish on its
boundary, one has an ideally restricted body, and the ke
DGnid becomesGid5Gid(a,b,b8,r ), which has been con
sidered in the elastic theory of a nematic liquid crystal. W
see that compared to the case of an ideal surfaceh5const,
r5const, the surface nonideality gives rise to an additio
term with the density1

2 rr8@h(x8)2h(x)#DGh, which is
nonzero only ifh~x! is not a constant. We will see that th
term alone contributes to the effective constantK13. The full
physical information that Eqs.~3!–~8! might convey goes far
beyond the subject of this paper. Here we will consider o
the consequences of these formulas to the elastic theory
nematic phase~note, however, that these can be applied
any uniaxial phase, e.g., for SmA) assumingr~x! andh~x! to
be given functions which is justified far from the phase tra
sitions.

III. ELASTIC CONSTANTS OF A NEMATIC LIQUID
CRYSTAL WITH NONIDEAL SURFACE

Both Ahh andAh enteringDGnid ~6! are assumed to dif-
fer from their constant bulk value only close to the surfa
where bothx and x8 are separated from the surface by
distance less thanl S;few l M . Obviously, the bulk value
Ahh,b5rb

2hb
2, where rb and hb are the bulk density and

order parameter; whileAh,b50. The functionsAhh and Ah
represent a general nonideal surface.

Let us first show that the only elastic term affected by t
nonideality in the leading order isF1 , whereas the change
of all other terms can be neglected. Indeed, any quadr
term has density;K/d2, whered is of order of the system
size. Then any bulk quadratic termKabFab is of order
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d(Kd22)5K/d whereas its change in the surface layer c
be estimated asl M(Kd22)5«K/d!K/d. Similarly, any
surface-induced quadratic term with the density nonvan
ing only in the intermediate layer is of the negligible ord
«K/d @that is why these terms introduced in@17# are absent
in FE ~1!#. The only exclusion is the surface termF1;K/d
whose surface densityK/(dlM) is very high: its change
; l MK/(dlM)5K/d which is of the same order as the valu
of the bulk terms and thus must be considered. This imp
that spatial dependence of the functionsAhh and Ah in the
surface layer must be taken into account only inF1 , which
thus is the sumF15F1,hh1F1,h of the terms correspondin
to AhhDGhh and AhDGh . In particular, the termAhDGh
contributes solely to the subsurface termF1,h sinceAh van-
ishes in the bulk; whereas in the bulk terms,Ahh can be
replaced by its bulk value.

Further, it is known that in order to obtain the elastic F
in a local form the pairwise potential is expanded in a pow
series of the componentsDni(x8,x)5ni82ni of the director
rotation vector up to the second order. In our case this
pansion takes the form

F.L1Q

5E
V
dx dx8S ]DGnid

]ni8
Dni1

1

2

]2DGnid

]ni8]nj8
DniDnj D , ~9!

where the derivatives are taken atn85n, andL andQ stand
for the terms linear and quadratic inDn, respectively. Then,
combining the above said with the known infinite-mediu
results@1# yields the quadratic term

Q5
Ahh,b

2 FKaa
~0!Faa2

1

2
~K11

~0!1K22
~0!!F24G , ~10!

and the linear termL5Lhh1Lh , where the contributions o
AhhDGhh andAhDGh have the form

Lhh5F1,hh1Ahh,bK13~2F111F331F13!, ~11!

Lh5F1,h . ~12!

The bareKaa
(0) andK13 are the standard Nehring-Saupe elas

constants for the potentialGhh taken for the bulk values ofh
andr ~on whichGhh can depend through the pair correlatio
function g2). The renormalizedKaa entering FE~1! ob-
tained from the above formulas in the standard form@1#

K115K11
~0!22K13, K335K33

~0!12K13,
~13!

K225K22
~0! .

To calculateF1,hh we consider the antisymmetric pa
DGhh,2 of the kernel DGhh , which is of the form
DGhh,25 1

2 @Ghh(a51,b82)2Ghh(a51,b2)#. A simple
direct calculation shows that, sincen251 and thusDa
5n•Dn is negligible, one has

S ]DGhh

]ni8
D

n85n

Dni5S ]DGhh,2

]ni8
D

n85n

Dni . ~14!
n

-

s

r

x-

c

As a result, the kernelDGhh and its antisymmetric par
DGhh,2 produce the same linear term~11! and hence the
sameK13 andF1 . This will be employed below in Eq.~16!.

Now we consider the identity

F25E dx dx8AhhDGhh,2[0, ~15!

which follows from the fact that the integrand is antisymm
ric with respect to permutation ofx andx8. It implies that the
elastic energyF2 of the kernelAhhDGhh,2 is zero. The
correspondent formulas for this case can be obtained f
Eqs. ~9!–~13! by replacing F with F2 , DGnid with
AhhDGhh,2 , and the constantsKab with Kab,2 . In the con-
text of Eqs.~13! and~14!, equating to zero the positive defi
nite splay, twist, and bend terms in thus obtained ela
expansion ofF2 yields K11,2

(0) 52K33,2
(0) 52K13,252K13,

K22,2
(0) 50. This shows that all the constants calculated

AhhDGhh,2 can be expressed in terms of a single const
K13 calculated for the original kernelAhhDGhh . In particu-
lar, the coefficientK11,2

(0) 1K22,2
(0) of the termF24 is equal to

2K13. Now equating to zero the sum of the remaining ter
in the elastic expansion ofF2 , one obtains the relation

F1,hh52K13Ahh,bS F131
1

2
F24D . ~16!

Equation~16! implies that the termF13 is absent inLhh ~11!.
This means that if theorder parameterh is constant and
F1,h}h82h50, the nonideal surfacewith whateverr~x!
does not violate the K13 cancellationobtained in@9# for an
ideal surface.

Now we address the last remaining termF1,h ~12!. This is
the total FE contribution of the second term inDGnid , which
is finite, since bothAh and DGh are antisymmetric. Inas
much as the form of the surface-induced term does not
pend on a specific nonideality that can change only its co
ficient, one can write

F1,h5E
V
dx dx8AhDGh52gF1,hh . ~17!

Here g52F1,h /F1,hh is the coefficient that characterize
restoration of a finiteK13 by given nonideality:g50 if Ah
50. Since the expression forF1,hh is known @17#, g is de-
termined by Eq.~17! ~the formula is given below!. From
Eqs.~16! and~17!, the general form ofF1 can be written as

F11Ahh,bK13F135Ahh,bK13S gF132
12g

2
F24D . ~18!

The K13 cancellation@9# obtains from this formula only in
the particular caseg50. This means thatthe effective K13 is
nonzero if the order parameter in the intermediate layer
spatially dependent and Ah}h82hÞ0.

Now we can write down formulas for the deformation F
of a nematic body with a nonideal surface for givenr andh.
Substituting Eqs.~10!–~12!, and ~18! into the deformation
FE F5L1Q yields
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F5
1

2
Kaa* Faa2K24* F241K13* F13, ~19!

whereKab* are the effective elastic constants of a nonidea
restricted body. These constants are connected to
Nehring-Saupe infinite-medium constantsKab,hh corre-
sponding to the kernelGhh ~7! ~above the symbolhh in the
subscripts of the elastic constants was omitted for brev!
and the bulk values of the density and scalar order param
as

Kaa* 5rb
2hb

2Kaa,hh , a51,2,3;

K13* 5grb
2hbK13,hh , ~20!

K24* 5
1

4
~K11* 1K22* 22K13* !.

Direct calculation using the definition of the termF1 ~see,
e.g.,@17#! results in the following formula forg:

K13* n35grb
2hbK13,hhn3

5
1

2 E0

l S
dzE

2z

`

dr3r 3
2E

2`

`

dr1dr2r~z!r~z1r 3!

3@h~z1r 3!2h~z!#S r 3

]Gh

]b
2n3r 2

2]Gh

]b2 D .

~21!

The integration is performed in the reference frame wh
the outer normal to the surface given byz50 is n5(0,0,
21), and director on the surfacen(z50)5(n1,0,n3). A fi-
nite K13* is obtained only if the scalar order parameter var
in the surface layer: only then the quantityh(z1r 3)2h(z)
d

ev

f
on
y
he

ter

e

s

does not vanish andgÞ0. Thus, bothK13* andK24* depend on
the surface behavior ofr and h through g; whereasKaa*
remain surface independent and take their infinite-med
values. Ifh~x! is sufficiently smooth, a simple estimate give
K13* ;(hb2hz50)rb

2K13,b , i.e., the effective value is propor
tional to the drop of the order parameter over the interme
ate layer. A similar contribution toK13 ~up to a factor! can be
obtained in the Landau–de Gennes theory@18#. However,
the relation~18! cannot be obtained in this pure phenomen
logical approach. Moreover, in contrast to this theory wh
to the leading orderh2 predicts the ratioK11* /K33* 51, our
result ~20! is that the ratio remains arbitrary as in th
Nehring-Saupe theory. In another recent paper@19#, the
terms linear inh were not considered in the Landau–d
Gennes FE.

The final goal of the elastic theory is to find the equili
rium director field. The boundary condition, which dete
mines the director along with the Euler-Lagrange equatio
depends on the surface behavior ofh and r solely through
the effective values of the elastic constants@4#. This makes
possible the elastic description of a nematic body with
nonideal surface. The elastic constants obtained above g
necessary connection of this elastic theory with the mic
scopic properties and details of the surface behavior. In p
ticular, our result justifies a finite effective constantK13. The
above estimate shows that the maximum value ofK13* is
rb

2hbK13,h whereK13,h is the standard constant correspo
ing to the kernelGh.
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@19# G. Skačej, A. Alexe-Ionescu, G. Barbero, and S. Zˇ umer, Phys.

Rev. E57, 1780~1998!.


